
Yes, we LEDBAT: Playing with the new

BitTorrent congestion control algorithm

Dario Rossi, Claudio Testa, Silvio Valenti

Telecom ParisTech, Paris, France – first.last@enst.fr

Abstract. Since December 2008, the official BitTorrent client is using a new

congestion-control protocol for data transfer, implemented at the application layer

and built over UDP at the transport-layer: this new protocol undergoes the name

of LEDBAT, for Low Extra Delay Background Transport.

In this paper, we study different flavors of the LEDBAT protocol, corresponding

to different milestones in the BitTorrent software evolution, by means of an active

testbed. Focusing on single flow scenario, we investigate emulated artificial net-

work conditions, such as additional delay and capacity limitation. Then, in order

to better grasp the potential impact of LEDBAT on the current Internet traffic,

we consider a multiple flows scenario, and investigate the performance of a mix-

ture of TCP and LEDBAT flows, so to better assess what “lower-than best effort”

means in practice. Our results show that LEDBAT has already fulfilled some of

its original design goals, though some issues still need to be addressed.

1 Introduction

Last December 2008, BitTorrent announced in the developer forum [1] that data transfer

would move to UDP: shortly after this announcement, panic started spreading on pop-

ular websites [2], since the announcement directly led to the misbelief that BitTorrent

plus UDP would equate with Internet meltdown. Yet, as already discussed at IETF [3]

and later recognized on the Web [4], the BitTorrent development process embraces

both ISP-friendliness (through AS-aware peer selection process) and TCP-friendliness

(through a novel congestion control protocol for data transfer).

This work focuses precisely on this latter aspect of BitTorrent evolution: BitTorrent

co-chairs an IETF Working Group on Low Extra Delay Background Transport (LED-

BAT), which has very recently released its first draft document. To better understand

the motivations behind LEDBAT, let us recall that the standard TCP congestion control

mechanism needs losses to back off. Under a drop-tail FIFO queuing discipline, this

means that TCP necessarily fills the buffer: as uplink devices of low-capacity home

access networks have very large buffers, this may translate into poor performance of

interactive applications (e.g., slow Web browsing and bad gaming/VoIP quality). LED-

BAT attempts at avoiding this drawback, by implementing a distributed congestion con-

trol mechanism, tailored for the transport of non-interactive traffic with lower than Best

Effort (i.e., TCP) priority. As stated in [5], among the main design goals of LEDBAT

there are the ability (i) to minimize the extra delay it induces in the bottleneck, while (ii)

saturating the available capacity at the same time. To fulfill these goals, LEDBAT has

been designed as a windowed protocol (i) able to infer earlier than TCP the occurrence

of congestion, by estimating the queuing delay variation on the end-to-end path, (ii) to

which it reacts by continuously modulating the congestion window growth/shrink by a

proportional-integral-derivative (PID) controller.

The aim of this work is twofold. On the one hand, we target at understanding the

performance of LEDBAT in a number of simple single flow scenarios, considering mul-

tiple versions of the official client so to better clutch its evolution. On the other hand, by

means of multiple flows scenarios, we aim at gathering a preliminary understanding of

the implication that a widespread adoption of LEDBAT could have on the current Inter-

net landscape. We tackle the above issues with an active-measurement black-box study

of the official BitTorrent client. Since LEDBAT is openly described in a IETF draft, the

performance of the protocol could be assessed by means of simulations as we did indeed

in [6]. Yet we still find active testbed experimentation extremely useful for several rea-

sons. First, the BitTorrent implementation of the LEDBAT protocol may differ from any

draft-compliant implementation by some design choices or parameter setting, that may

have a deep impact on the protocol performance. Second, the most widespread LED-

BAT implementation on the Internet will be the official BitTorrent version, rather than

a legacy implementation, which motivates a direct evaluation of this client. Third, from

our point of view, the analysis of proprietary applications by independent observers has

the benefit of sheding light on the protocol inner workings. Finally real-world dynamics

introduced by network devices are often much more complex than the synthetic ones

that a simulation environment, although accurate, can reproduce.

With such an approach, we conduct a preliminary yet insightful evaluation of the

protocol performance. First, we are able to report on the entire evolution of the protocol

implementation, from the first (immature) version to the last (nearly stable) one. We

point out that LEDBAT is able to, at least partly, fulfill its original design goals: un-

der both controlled testbed and Internet experiments, LEDBAT avoids an uncontrolled

queuing (unlike TCP), and is, under a range of conditions, able to saturate the available

capacity (or, in case capacity is not saturated, this could be done by a simple tweaking

of LEDBAT parameters). At the same time, we identify some open points regarding the

protocol efficiency: for instance, TCP traffic on the “unrelated” backward path is able

to slow down LEDBAT transmission on the forward path, whose capacity may be then

significantly underutilized. Finally, we stress that the precise meaning of “lower-than

best effort” should be carefully specified, as the mutual influence of TCP and LEDBAT

traffic may significantly differ depending on the TCP flavor and settings as well.

2 Methodology and Preliminary Insights

For the investigation of the LEDBAT, we adopt an active-measurements black-box ex-

perimental approach, consisting in the analysis of the traffic generated by the BitTorrent

client on different network scenarios. We run several versions of the new BitTorrent

client on PCs equipped with dual-core processors featuring (i) unless otherwise stated,

native installations of Windows XP or (ii) BitTorrent clients running on Linux using

the wine Windows emulator. PCs are either (i) connected to the Internet through ISPs

offering ADSL access, or (ii) in a local LAN testbed via Ethernet cards. In the first case

we leave the default modem settings unchanged, while in the second one we disable

the interrupt coalescing feature and avoid the usage of jumbo frames. Moreover in the

LAN testbed, the traffic is routed through a middlebox running a 2.6.28 Linux kernel,

which acts also as network emulator by means of netem, in order to enforce artificial

network conditions.

As formerly stated, in our experiments we consider both single flow and multiple

flows scenarios. Single flow experiments are useful to understand the protocol perfor-

mance under a range of different network conditions, while multiple flows experiments

are needed to quantify the level of inter-protocol priority (e.g., with respect to TCP

flows) and intra-protocol fairness (e.g., with respect to other LEDBAT flows) achieved

by the distributed control algorithm. Under the classic BitTorrent terminology, every

LEDBAT sender-receiver pair is a seeder-leecher pair, so that data transfer happens in a

single direction. In case of multiple-flows experiments, every pair of actors belongs to

a different torrent, so that no data exchange happens between different leechers.

We start by providing some insights on the BitTorrent evolution with the help of

Fig. 1. Every picture refers to a different experiment, of which we report the first minute,

corresponding to a different BitTorrent flavor. The seeder connects to the middlebox

with a 100 Mbps Ethernet link, while between the middlebox and the leecher there is

a 10 Mbps Ethernet bottleneck link. No other traffic is present on the bottleneck, and

the one-way delay on the forward path is forced to 50 ms, to loosely emulate a scenario

where two faraway peers with high speed Internet access (e.g., ADSL2+, FTTH or

Ethernet) are connected together.

Pictures are arranged so that the macroscopic timescale of BitTorrent evolution also

grows from left to right: Fig. 1-(a) shows, as a reference, the old open-source TCP-based

client, while Fig. 1-(b) refers to the first closed-source version α1, released December

2008. Then, Fig. 1-(c) depicts the α2 version, released roughly at the same time of the

first IETF draft [5] in March 2009. Finally, Fig. 1-(d) refers to the β1 version, released

after the draft was accepted as an official IETF WG item in August 2009.

The comparison of different versions of the protocol yields several interesting obser-

vations. First, notice that all versions analyzed correspond to important milestones in the

development process of the protocol: thus, they provide a valuable perspective which

highlights the flaws as well as the improvements of the subsequent steps of LEDBAT

evolution. In particular, the α1 version (which precedes the draft specification and mo-

tivates a black-box approach) was particularly instable and soon superseded. Moreover,

from this study it emerges that the LEDBAT implementation is constantly evolving: as

such, we believe that picking a single version, such as the most recent one, would limit

the scope of our study.

For each flavor represented in Fig. 1, pictures depict the packet size on the y-axis,

measured at the sender side, with time of the experiment running on the x-axis. As it

can be seen, the application-layer segmentation policy is remarkably variable across

different LEDBAT flavors. In contrast with TCP, which always transmits segments of

maximum size, LEDBAT instead uses variable packet sizes. For instance, the α1 im-

plementation of Fig. 1-(b) mostly used small segments of about 350 bytes, transmitted

at very high rate. Although this allows a finer tuning of the congestion window size,

(e.g., likely to be more reactive to network condition), it definitively results in an un-

necessary overhead. This segmentation policy is a bad choice for large transfers, and

 0

 250

 500

 750

 1000

 1250

 1500

 0 10 20 30 40 50

Time [s]
(a)

TCP
v5.2.2 (Until Oct’08)

Open Source
P

ac
k

et
 s

iz
e

[B
y

te
]

 0 10 20 30 40 50

Time [s]
(b)

α1
v1.9-13485 (Since Dec’08)

Closed Source
P

ac
k

et
 s

iz
e

[B
y

te
]

 0 10 20 30 40 50

Time [s]
(c)

α2
v1.9-15380 (Since Mar’08)

First LEDBAT draft
P

ac
k

et
 s

iz
e

[B
y

te
]

 0 10 20 30 40 50

Time [s]
(d)

β1
v1.9-16666 (Since Aug’09)
Draft accepted as WG item

P
ac

k
et

 s
iz

e
[B

y
te

]

Fig. 1. The last few months of BitTorrent client evolution: Temporal plot of packet-level traces

for different BitTorrent flavors, reporting packet size during the first minute of the transfer

was indeed soon dropped in favor of larger segment sizes. As can be gathered from

Fig. 1-(c) and Fig. 1-(d), newer BitTorrent flavors start by segmenting data in small-

size segments, and then gradually increase the segment size over time, rarely changing

it once the full-payload segment size is reached. In case of α2 flavor, we observe subse-

quent phases, about 10-seconds long, where only a single segment size is used: it takes

about 40 seconds to the application-layer segmentation policy to settle to full-payload

segment size. The β1 flavor behaves similarly, although a wider range of segment sizes

is employed during the whole experiment, probably to obtain a finer byte-wise control

of the congestion window.

The corresponding time evolution of the achieved throughput, measured over 1 s

time-windows is depicted in Fig. 2-(a), using a longer timeframe of about 4 minutes.

We merely superpose the curves for the sake of comparison, but experiments have

been independently performed. It can be seen that, shortly after achieving a sustained

throughput of about 9 Mbps during about 50 seconds, the sending rate of the α1version

suddenly drops, and about 2 minutes are necessary to recover from this starvation (this

unstable behavior was observed under a wide range of conditions). In contrast, α2 and

β1 achieve a lower but steady throughput, slightly above 4 and 7 Mbps respectively.

As a reference, we also report the throughput of a BitTorrent client using TCP run-

ning on the native Windows and Linux networking stacks under their default settings.

The networking stack implementation and configuration dramatically impacts the pro-

tocol performance also in the TCP case. As reported in [7], in Windows XP, for trans-

mission rates between 10-100 Mbps the default receive window is set to 17520 Bytes,

whereas the default value of the Linux receive window (set in net.ipv4.tcp mem)

is about 6 times larger. Notice that in the Windows XP case, due to the 50 ms delay, the

default value of the maximum window is not large enough to allow full saturation of

the bottleneck pipe. This is an important, though not novel, observation on which we

will come back later on Sec. 3.2.

3 Experimental Results

In this section, we start with simple single flow scenarios so to refine the performance

pictures of the different flavors by testing the impact of varying network conditions.

 0

 2

 4

 6

 8

 10

 0 60 120 180 240

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [s]

TCP Windows
(17.5 KB)

α2

β1 α1α1

TCP Linux
(108 KB)

(a)

 0

 0.5

 1

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Time [s]

C
ap

ac
it

y
 P

ro
fi

le
 [

M
b

p
s]

TCP

α2

β1

 0

 0.5

 1

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Time [s]

C
ap

ac
it

y
 P

ro
fi

le
 [

M
b

p
s]

TCP

α2

β1

 0

 0.5

 1

 0 120 240 360 480 600

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

Time [s]

C
ap

ac
it

y
 P

ro
fi

le
 [

M
b

p
s]

TCP

α2

β1

(b)

Fig. 2. Throughput for different flavors (a) without and (b) with bottleneck capacity limitations.

Among the several experiments conducted, we report the most relevant for our perfor-

mance evaluation. In more detail, we consider (i) bottleneck capacity limitations, (ii)

one-way delay impairment on either the forward or the backward path and (iii) differ-

ent access technologies. We finally consider a scenario in which (iv) a single TCP flow

interferes with LEDBAT on either the forward or the backward path, and (iv) multiple

flows share the same bottleneck link, varying the ratio of LEDBAT and TCP flows so

to better assess the protocols mutual influence.

3.1 Single flow: Bottleneck Capacity, Delay and Access Impact

Let us start by testing how BitTorrent copes with changing bottleneck capacity. We

use a setup similar to the former experiment, but in this case the capacity of the link

between the middlebox and the leecher is limited by means of the Hierarchical Token

Bucket (HTB), available in netem. In more detail, we start at t=60 s to let LEDBAT

throughput settle to a steady state, and then we turn on the HTB shaper. We initially

tune it to 250 Kbps, increasing then the available capacity in steps of 250 Kbps every 2

minutes, as shown by the solid line capacity profile in Fig. 2-(b). A decreasing capacity

profile yields to similar results and is thus not shown in the figure.

Time evolution of the throughput is reported for the new α2, β1 flavors as well as

for the old TCP client. Flavor α2 proves to be unable to quickly adapt to the changing

link rate: it periodically enters a probing (or slow-start) phase, where it likely tries to

infer network conditions by varying the segment size and sending rate. However, this

phase is apparently unsuccessful and α2 throughput starves (we did not observe such a

starvation phenomenon for bottleneck larger than 1000 Kbps). This bug has been fixed

by later releases: β1 matches the available bandwidth, and moreover LEDBAT shows

a much smoother curve than TCP. In this case, we may say that one of the LEDBAT

design goals, namely, to efficiently exploit the available capacity, seems to be perfectly

achieved.

Then, consider that the LEDBAT congestion control is based on a linear adapta-

tion (i.e., growth/shrink) of the sender window to variations in the queuing delay on

the forward data path (i.e., as inferred by the decrease/increase of the one-way delay,

 0

 5

 10

 0 120 240 360 480 600
 0

 40

 80

 120

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

D
el

ay
 [

m
s]

Time [s]

α2 β1

α2 β1

 0

 5

 10

 0

 40

 80

 120

(a)

 6

 7

 8

 9

 10

 0 120 240 360
 0

 40

 80

 120

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

D
el

ay
 [

m
s]

Time [s]

α2

β1

α2 β1

 6

 7

 8

 9

 10

 0

 40

 80

 120

(b)

Fig. 3. Throughput evolution for different delay settings on the forward (top) and backward (bot-

tom) path: (a) average delay increases over time, delay is equal for all packets (b) average delay

is constant over time, delay variance increases over time.

with respect to the minimum measured one as reference): it is thus critical to assess its

reaction to the measured one-way (OWD) delay. However, the sender response to queu-

ing delay variations is nevertheless based on a closed-loop reaction with the receiver:

therefore, we argue that the time instants at which the sender window growth/shrink

decisions will be taken are also affected by the two-way delay, or Round Trip Time

(RTT).

Thus, we setup and experiment in which we add an incremental OWD on either the

forward (data) or backward (acknowledgement) paths. As before, after LEDBAT settles

we increase the additional delay in steps of 20 ms every 2 minutes, for an RTT spanning

on the 20–100 ms range as shown by the stepwise profile in Fig. 3-(a). The amount of

OWD delay is added either to the forward path (top) or backward (bottom) path: in

the former case, the delay incrementally adds to the OWD estimation performed by the

sender so that it may directly affect the congestion control loop, while in the latter case

it only delays the acknowledgement and may only indirectly affect the control loop.

As it can be seen from the comparison of the top and bottom plots of Fig. 3-(a), the

overall effect on performance is the same: BitTorrent throughput decreases for increas-

ing RTT, which is due to an upper bound of the receiver window (analogously to what

seen before for TCP). With some back-of-the-envelope calculation based on the exper-

imental results shown in Fig. 3-(a), one can gather that the receiver window limit has

been increased from 20 full-payload segments of α2 to 30 full-payload segment of β1.

While the picture shows that this limit may not be enough to fully utilize the link capac-

ity (e.g., β1 achieves about 4 Mbps throughput on a 10 Mbps link with RTT=100 ms), in

practice it is not a severe constraint, as the capacity will likely be shared across several

flows established with multiple peers of a BitTorrent swarm (or the receiver window

limit could be increased).

In Fig. 3-(b) we instead investigate the effects of a variable OWD delay, that changes

for each packet uniformly at random, with average OWD equal to 20 ms. In this case

we keep the average constant but increase the delay variance every 2 minutes, so that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

Time [s]

T
h

ro
u

g
h

p
u

t
[M

b
p

s] TCP β1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

 5

Time [s]

T
h

ro
u

g
h

p
u

t
[M

b
p

s]

R
T

T
 [

s]

TCP FWD TCP BWD

β1 RTT

(b)

Fig. 4. Real Internet experiments: (a) different flavors and (b) interfering traffic.

the profile reports the minimum and maximum delays of the uniform distribution. The

variable delay also implies that packet order is not guaranteed, because packets encoun-

tering a larger delay will be received later and thus out-of-order. Again, delay variance

is enforced on either the forward (top) or backward (bottom) path. As it can be ex-

pected, LEDBAT is rather robust to a variable jitter on the backward path, where we

observe only a minimal throughput reduction. Conversely, variance in the forward path

has a much more pronounced performance impact: interestingly, α2 throughput signif-

icantly drops, whereas β1 performance is practically unchanged. This probably hints to

the use of a more sophisticated noise filtering algorithm (e.g., that discards delay sam-

ples of out-of-order packets), although a more careful analysis is needed to support this

assertion.

We finally perform an experiment using PCs connected through ADSL modems to

the wild Internet. Thus, in this case we no longer have complete control over the net-

work environment, but we still can assume that no congestion happens in the network

and that the access link constitutes the capacity bottleneck. It can be seen from Fig. 4-(a)

that in a realistic scenario, when the end-hosts only run LEDBAT, β1 achieves a smooth

throughput whose absolute value closely matches the nominal ADSL uplink capacity

(640 Kbps). In contrast, TCP throughput is more fluctuating due to self-induced con-

gestion, which causes fairly large queues before eventual losses occur. This confirms

that the goal of avoiding self-induced congestion at the access is also met.

3.2 Multiple Flows

We now explore scenarios with several concurrent flows, starting with the simple one

where a single LEDBAT flow interacts with a single TCP flow. Considering two PCs

connected through ADSL modems to the wild Internet, Fig. 4-(b) reports an experiment

where, during a single LEDBAT transfer, we alternate periods in which PCs generate

no traffic other than LEDBAT, to periods (i.e., the gray ones) in which we superpose

TCP traffic on either the forward or backward path.

The plot reports the time evolution of the LEDBAT throughput as well as the RTT

delay measured by ICMP (as a rough estimation of the queue size seen by LEDBAT).

During the silence periods (0–120 s and 240–360 s), as bottleneck is placed at the edge

of the network, LEDBAT is able to efficiently exploit the link rate. As soon as a back-

logged TCP transfer is started on the forward path (120–240 s), LEDBAT congestion

control correctly puts the traffic in low priority. Notice that in this case, ICMP reports

Table 1. Efficiency and Fairness between multiple TCP and LEDBAT flows

TCPW , LEDBAT β1 TCPL, LEDBAT β1

TCP LEDBAT %1 %2 %3 %4 η Fairness RTX% %1 %2 %3 %4 η Fairness RTX%

4 0 0.25 0.25 0.25 0.25 0.67 1.00 5e-4 0.25 0.25 0.25 0.25 0.98 1.00 0.06

3 1 0.14 0.14 0.14 0.57 0.94 0.64 - 0.35 0.32 0.32 0.00 0.98 0.75 0.14

2 2 0.10 0.10 0.40 0.40 0.93 0.74 - 0.43 0.51 0.03 0.03 0.98 0.56 4e-3

1 3 0.08 0.31 0.31 0.31 0.92 0.87 - 0.87 0.04 0.04 0.05 0.98 0.33 -

0 4 0.25 0.27 0.24 0.24 0.96 1.00 - 0.25 0.27 0.24 0.24 0.96 1.00 -

that a fairly large queue of TCP data packets builds up in the ADSL line (roughly 4 sec-

onds, corresponding to about 300 KB of buffer space for the nominal ADSL rate). Con-

versely, whenever the backlogged TCP transfer is started on the backward path (360–

480 s), LEDBAT transfer on the forward direction should only be minimally affected by

the amount of acknowledgement TCP traffic flowing in the forward direction. However,

as it can be seen from Fig. 4-(b), the LEDBAT throughput drastically drops, further ex-

hibiting very wide fluctuations (notice also that the ADSL modem buffer space of the

receiver appears to be smaller, as the RTT is shorter). Notice that in this case, LEDBAT

forward data path shares the link capacity only with TCP acknowledgements, which

account for a very low, but likely very bursty, throughput: this may led LEDBAT into

a messy queuing delay estimate, and as a result, the uplink capacity of the device is

heavily underutilized (about 74% of wasted resources).

We finally perform experiments to analyze the interaction of several flows. In this

case, we setup several torrents, one for every different LEDBAT seeder-leecher pair,

so that no data exchange happens between leechers of different pairs. Thus, flows are

independent at the application layer, though their are dependent at the transport layer,

as they share the same physical 10 Mbps RTT=50 ms bottleneck.

We consider a fixed number of F=4 flows, and vary the number of TCP and LEDBAT-

β1 connections to explore their mutual influence. All flows start at time t = 0, exper-

iments last 10 minutes and results refer to the last 9 minutes of the experiment. We

generate TCP traffic using Linux (so that we can reliably gather retransmission statis-

tics using netstat), setting the congestion control flavor to NewReno. We perform

two set of experiments, using either the Windows or Linux defaults values for the max-

imum receiver windows as early stressed in Fig. 2-(a): in our setup, the Windows-like

TCP settings (TCPW) are thus less aggressive than Linux ones (TCPL).

For each experiment, we evaluate user-centric performance by means of the break-

down of the resources acquired by each flow, while we express network-centric per-

formance in terms of the link utilization η. To further quantify the protocol mutual

influence, we use the Jain’s fairness index of the flows throughput and evaluate the

percentage of TCP retransmissions (RTX). Results are reported in Tab. 1, with Win-

dows and Linux settings on the left and right respectively. Comparing the two table

portions, we argue that the exact meaning of “low-priority” may be fuzzy in the real-

world. Indeed, while LEDBAT-β1 is lower priority than an “aggressive” TCP, it may

be competing more fairly against a more gentle set of parameters, thus being at least

as high priority as TCP. In fact while LEDBAT is practically starved by TCPL, LED-

BAT is able to achieve a slightly higher priority than TCPW . Although we recognize

that results may change using more realistic and heterogeneous network scenarios, or

using the real Windows stack instead of simply emulating its settings, we believe that

an important point remains open: i.e., the precise meaning of “lower than best effort”,

as the mutual influence of TCP and LEDBAT traffic may significantly differ depending

on the TCP flavor as well.

4 Related work

Two bodies of work are related to this study. On the one hand, BitTorrent has been

studied by means of theoretical analysis [8], simulation [6,9,10] or measurements [11].

On the other hand, there is a large literature on Internet congestion control that use

either on fields measurement [12–14], or simulation and modeling [15–20]. Due to

BitTorrent very recent evolution, with the exception [6], where we study LEDBAT by

means of simulation, previous work on BitTorrent [8–11] focused on complementary

aspects to those analyzed in this work. In [8] a fluid model is used to determine the

average download time of a single file. Simulation has instead been used in [9] to pro-

pose incentive mechanism to avoid free-riding and in [10] to assess the performance

of a locality-aware peer selection strategy. Finally, measurements study [11] analyzes

the log of a BitTorrent tracker, examining flash-crowd effect, popularity and download

speed of a single file. Congestion control work closer to our adopts a black-box experi-

mental measurements approach to unveil proprietary algorithms of, e.g., Skype [12,13]

or P2P-TV applications [14]. More precisely, [12, 14] analyzes system reaction to em-

ulated network conditions, whereas [13] investigates the bottleneck share of multiple

flows. Finally, relevant work has been devoted to the design of lower-than best effort

protocols similar to LEDBAT, as for instance [17–20].

5 Conclusions

This paper presented an experimental evaluation of LEDBAT, the novel BitTorrent con-

gestion control protocol. Single-flow experiments in a controlled environment show

some of the fallacies of earlier LEDBAT flavors (e.g., instability, small packets overkill,

starvation at low throughput, tuning of maximum receiver windows, wrong estimate

of one-way delay in case of packet reordering, etc.), that have been addressed by the

latest release. Experiments in a real Internet environment, instead, show that, although

LEDBAT seems a promising protocol (e.g., achieving a much smoother throughput and

keeping thus the delay on the link low), some issues still need to be worked out (e.g.,

performance in case of reverse path traffic). Finally, multiple-flows experiments show

that “low-priority” meaning significantly varies depending on the TCP settings as well.

This work constitutes a first step toward the analysis LEDBAT performance. More

effort is indeed needed to build a full relief picture of the LEDBAT impact on other inter-

active applications (e.g., VoIP, gaming), explicitly taking into account the QoE resulting

from their interaction. Also, the methodology could be refined by, e.g., instrumenting

the Linux kernel to measure the queue size, or by inferring the OWD measured by

LEDBAT by sniffing traffic at both the sender and receiver, etc. Finally, the boundaries

of the investigation could be widened by taking into account the effects of LEDBAT

adoption on the BitTorrent P2P system itself, as for instance LEDBAT interaction with

throughput based peer-selection mechanism, or its impact on files download time.

Acknowledgement

This work has been funded by the Celtic project TRANS.

References

1. Morris, S.: µTorrent release 1.9 alpha 13485. http://forum.utorrent.com/

viewtopic.php?pid=379206#p379206 (Dec 2008)
2. Bennett, R.: The next Internet meltdown. http://www.theregister.co.uk/

2008/12/01/richard_bennett_utorrent_udp (Dec 2008)
3. Shalunov, S., Klinker, E.: Users want P2P, we make it work. In: IETF P2P Infrastructure

Workshop. (May 2008)
4. : BitTorrent Calls UDP Report ”Utter Nonsense”. http://tech.slashdot.org/

article.pl?sid=08/12/01/2331257 (Dec 2008)
5. Shalunov, S.: Low extra delay background transport (ledbat). IETF Draft (Mar 2009)
6. Rossi, D., Testa, C., Valenti, S., Veglia, P., Muscariello, L.: News from the internet congestion

control world. Technical Report (Aug 2009)
7. Center, M.W.D.: Tcp receive window size and window scaling. http://msdn.

microsoft.com/en-us/library/ms819736.aspx

8. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-to-peer

networks. In: ACM SIGCOMM’04, Portland, Oregon, USA (Aug 2004)
9. Bharambe, A.R., Herley, C., Padmanabhan, V.N.: Analyzing and Improving a BitTorrent

Networks Performance Mechanisms. In: IEEE INFOCOM’06, Barcelona, Spain (Apr 2006)
10. Bindal, R., Cao, P., Chan, W., Medved, J., Suwala, G., Bates, T., Zhang, A.: Improving

Traffic Locality in BitTorrent via Biased Neighbor Selection. In: IEEE ICDCS ’06, Lisboa,

Portugal (Jul 2006)
11. Izal, M., Urvoy-Keller, G., Biersack, E.W., Felber, P., Al Hamra, A., Garcés-Erice, L.: Dis-

secting BitTorrent: Five Months in a Torrent’s Lifetime. In: Passive and Active Network

Measurement (PAM), Antibes, France (Apr 2004)
12. Bonfiglio, D., Mellia, M., Meo, M., Rossi, D.: Detailed Analysis of Skype Traffic. IEEE

Transaction on Multimedia 11(1) (Jan 2009)
13. De Cicco, L., Mascolo, S., Palmisano, V.: Skype video responsiveness to bandwidth varia-

tions. In: ACM NOSSDAV ’08, Braunschweig, Germany (May 2008)
14. Alessandria, E., Gallo, M., Leonardi, E., Mellia, M., Meo, M.: P2P-TV Systems under

Adverse Network Conditions: A Measurement Study. In: IEEE INFOCOM’09. (Apr 2009)
15. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model

and its empirical validation. ACM SIGCOMM Comp. Comm. Rev. 28(4) (Oct 1998)
16. Brakmo, L., O’Malley, S., Peterson, L.: TCP Vegas: New techniques for congestion detection

and avoidance. In: ACM SIGCOMM’94, London, UK (Aug 1994)
17. Venkataramani, A., Kokku, R., Dahlin, M.: TCP Nice: a mechanism for background trans-

fers. In: USENIX OSDI’02, Boston, MA, US (Dec 2002)
18. Kuzmanovic, A., Knightly, E.: TCP-LP: low-priority service via end-point congestion con-

trol. IEEE/ACM Transaction on Networking 14(4) (Aug 2006)
19. Liu, S., Vojnovic, M., Gunawardena, D.: Competitive and Considerate Congestion Control

for Bulk Data Transfers. In: IWQoS’07, Evaston, IL, US (Jun 2007)
20. Key, P., Massoulié, L., Wang, B.: Emulating low-priority transport at the application layer:

a background transfer service. In: ACM SIGMETRICS’04, New York, NY, USA (Jan 2004)

