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Abstract. To describe, analyze, and model the topological and structural charac-
teristics of the Internet, researchers use Internet maps constructed at the router or
autonomous system (AS) level. Although progress has been made on each front
individually, a dual graph representing connectivity of routers with AS labels
remains an elusive goal. We take steps toward merging the router-level and AS-
level views of the Internet. We start from a collection of traces, i.e. sequences
of IP addresses obtained with large-scale traceroute measurements from a dis-
tributed set of vantage points. We use state-of-the-art alias resolution techniques
to identify interfaces belonging to the same router. We develop novel heuristics
to assign routers to ASes, producing an AS-router dual graph. We validate our
router assignment heuristics using data provided by tier-1 and tier-2 ISPs and
five research networks, and show that we successfully assign 80% of routers with
interfaces from multiple ASes to the correct AS. When we include routers with
interfaces from a single AS, the accuracy drops to 71%, due to the 24% of total
inferred routers for which our measurement or alias resolution fails to find an in-
terface belonging to the correct AS. We use our dual graph construct to estimate
economic properties of the AS-router dual graph, such as the number of internal
and border routers owned by different types of ASes. We also demonstrate how
our techniques can improve IP-AS mapping, including resolving up to 62% of
false loops we observed in AS paths derived from traceroutes.

1 Introduction

There is growing scientific interest in the structure and dynamics of Internet topology,
primarily at the router and Autonomous System (AS) levels. Substantial progress over
the last decade toward understanding and improving the integrity and completeness of
router and AS-level topologies separately (reviewed in Section 4) has inspired us to
seek a graph construction that merges router and AS-level views of the Internet. Such
a view would capture administrative boundaries while providing sufficient detail about
the geography and internal structure of each AS. Inherent limitations and inaccuracies
of existing techniques for alias resolution, IP-to-AS mapping, and router-to-AS assign-
ment (not to mention validation of any of them) render this goal challenging.

In this work we take initial steps toward merging router and AS-level views into a
dual graph representation of the Internet. We start from active measurement (traceroute-
like) datasets collected using CAIDA’s Archipelago distributed measurement infrastruc-
ture (Ark) [17]. We then apply state-of-the art alias resolution techniques [19] to infer
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which interfaces belong to the same router, creating a router-level Internet map. Finally,
we propose heuristics to assign routers to ASes, using information derived from the
interfaces that we infer belong to a particular router. We evaluate our AS assignment
heuristics by validating against ground truth data from tier-1 and tier-2 ISPs and five re-
search networks. We successfully assigned 80% of multi-AS routers, i.e, routers whose
interfaces map to different ASes. When we include single-AS routers (routers whose
interfaces all map to the same AS), the accuracy drops to drops to 71%, due to the 24%
of total inferred routers for which our measurement or alias resolution fails to find an
interface belonging to the correct AS. We also demonstrate how our techniques can be
used to study the statistical properties of the resulting AS-router dual graph, and can
improve IP-AS mapping of state-of-the-art AS-level traceroute tools.

2 Datasets and methodology

We briefly describe three components of our methodology: gathering a large set of Inter-
net path data; resolving IP address aliases to create a router-level graph; and designing
heuristics to map annotated routers to ASes. All CAIDA data sets and tools developed
to support this work will be publicly available.

2.1 Datasets

Active measurements

We collected our active measurements using CAIDA’s Archipelago (Ark) Measurement
infrastructure [17], using 37 monitors in 28 countries. The Ark monitors used Paris
traceroute [6] to randomly probe destinations from each routed /24 seen in BGP dumps
from Routeviews over a 28-day collection period in September and October 2009. We
call the resulting set of 268 million traceroute paths our traceroute dataset, which we
used to infer which IP interfaces belong to the same router (Section 2.2).

BGP data

To assign IP addresses to ASes, we used publicly available BGP dumps provided by
Routeviews [26] and one of RIPE NCC'’s collectors (RCC12) [25]. BGP (Border Gate-
way Protocol) is the protocol for exchanging interdomain routing information among
ASes in the Internet. A single origin AS typically announces (“originates™) each routable
prefix via BGP. We perform IP-to-AS mapping by assigning an IP address to the origin
AS of the longest matching prefix for that IP address. We also used this BGP data to an-
notate each interdomain link with one of three (over-simplified) business relationships:
customer-provider (the customer pays the provider); settlement-free peer (typically no
money is exchanged); and sibling (both ASes belong to the same organization) — using
the classification algorithm in Dimitropolous et al. [10].

Ground truth dataset

Our ground truth datasets includes private data from a tier-1 ISP (ISP;) and a tier-
2 ISP (ISP3). In addition we use public data from the following research networks:
CANET (ISP¢)[1], GEANT (ISP¢)[2], Internet2 (ISP1)[4], I-Light (ISP)[3], and Na-
tional LambdaRail (ISP )[5]. ISP; and the five research networks provided the full list
of interfaces. ISP, and ISP- provided their hostname conventions, which allowed us to



identify interfaces in their address space, but not on their routers. We thus have two sets
of interfaces for each network i: Z; (interfaces on routers that belong to network 4) and
Z; (interfaces in 4’s address space, but on routers that do not belong to network 7). For
each network we then generate a list of AS numbers known to belong to that network:
Ay, Ay, Ac, A;, ete., and the set of ASes that are not in each A;, denoted A;.

2.2 Aliasresolution

For alias resolution, we rely on CAIDA’s alias resolution tools MIDAR and kapar [19].
MIDAR expands on the IP velocity techniques of RadarGun [8], and kapar expands
on the analytical techniques of APAR [14]. We first use the traceroute dataset as input
to MIDAR, the output of which is fed into kapar. kapar heuristically infers the set of
interfaces that belong to the same router, and the set of two or more routers on the same
“IP link” (which could either be a point-to-point link, or LAN or cloud with multiple
attached IP addresses). kapar produces two datasets corresponding to inferred nodes
(routers) and links. Each node in the router dataset has a set of known interfaces and
inferred interfaces. Known interfaces were measured directly; inferred interfaces result
from kapar determining that a router r; has a link to interface i on router r5, but we
did not see an actual interface on router r;. The interfaces on an IP link are typically
assigned IP addresses from the same prefix, so we assume that router » must have an
interface from the same prefix as i,. The link dataset contains, for each link, the set
of routers and router interfaces that we inferred as sharing that link. kapar correctly
identified 66% of the true aliases from among the set of ISP, ’s observed interfaces (our
largest set of ground truth data), with a 5% false positive rate.

At least three limitations of our alias resolution techniques may affect the AS assign-
ment process. First, a large number of interfaces and links between them are never
observed, either because they do not respond to ICMP, or because none of the tracer-
outes encounter those interfaces. Second, some interfaces that respond to ICMP have
addresses belonging to private address space, which makes them indistinguishable from
other interfaces using the same private address space. Third, even when all of a router’s
interfaces are discovered, we may have insufficient information to infer that they belong
to the same router. For example, we inferred 1390 routers as having interfaces from a
single AS in A, which our method would infer to mean these routers are in ISP;. But
our ground truth dataset refutes this inference; these routers do not belong to ISP+, and
likely have an interface (which we either did not observe or did not resolve accurately)
from at least one other AS in Aj;.

2.3 ASassignment Methods

The goal of the AS assignment process is to determine the AS that owns each router. For
each router r, we create an AS frequency matrix that counts the number of interfaces
(known and inferred) from each AS that appears on r. The ASes in this frequency
matrix represent the set of possible owner ASes of . Next, we describe the heuristics
we designed to determine r’s ownership from among the candidates present in r’s AS
frequency matrix. Figure 1 illustrates the five heuristics examined in this paper.
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Single: This heuristic is used for the case where a single AS is present in r’s AS fre-
quency matrix. In this case, we (trivially) assign r to this AS.

Election: This heuristic assigns a router r to the AS with the highest frequency inr’s AS
frequency matrix, assuming routers tend to have more interfaces in the address space of
their owner. Election produces an ambiguous assignment when multiple ASes have the
same (highest) frequency, which occurred for 14% of the multi-AS routers in our set.

Neighbor: For this heuristic, we first determine the set of single-AS routers to which
r is connected (its single-AS neighbors). We create a new AS frequency matrix that
counts the number of single-AS neighbors of » from each AS. The Neighbor heuristic
assigns r to the AS with the largest frequency (most single-AS neighbors), based on the
intuition that a router is connected to a larger number of single-AS routers in its owner
AS. Neighbor produces an ambiguous assignment when multiple ASes have the same
(highest) frequency.

Customer: This heuristic uses the AS relationship dataset to assign relationships to
each pair of ASes from r’s AS frequency matrix!. Customer assigns r to the AS in-
ferred to be a customer of every other AS in r’s AS frequency matrix. This heuristic is
based on the common practice that customer and provider routers typically interconnect
using addresses from the provider’s address space. Consequently, a router with inter-
faces from both the customer and provider address spaces is assigned to the customer.

1 Not every possible AS pair in 7’s frequency matrix has a known relationship; many AS pairs
have no link between them in the original BGP AS graph, so no defined relationship.



Degree: For this heuristic, we first generate an AS-level graph by assuming full-mesh
connectivity among ASes from each router’s AS frequency matrix. We then use this
graph to generate an AS degree for each AS. Degree assigns router r to the smallest-
degree AS from r’s AS frequency matrix, i.e., the AS most likely to be the customer
AS, based on similar intuition as the Customer heuristic.

2.4 Evaluation of AS Assignment heuristics

We next evaluate our AS assignment heuristics by comparing our AS assignment with
our ground truth datasets. We classify each router inferred by kapar into the following
sets. If a router ro has at least one interface in Z;, then we assign r, to the set R;
(the set of routers owned by ISP;). If a router ; has at least one interface from the
set Z;, then we assign 7 to the set R; (inferred routers not owned by ISP;). We found
39 routers (0.6% of the total analyzed) with interfaces in both Z; and Z; or Z; and
Z;, which contradicts the meaning of these data sets (describing mutually exclusive
routers). These discrepancies are due to false positives in our alias resolution process,
so we discard them for the purpose of evaluating our AS assignment heuristics. All but
three routers in R; have a single AS in A; (A; is the set of ASes owned by ISP;), which
means there is a single successful assignment for most routers. For the three routers
with multiple ASes in A;, successful assignment is ambiguous, and we omitted these
routers from the evaluation, leaving us with | R | = 3,405 and |R1| = 2,254, |Ro| = 241
and [R2| =86, |[Rg|=37and [R¢| =0, [Rr|=32and [R.| =0, |[Rr| =17 and |R7|
=0, |[Ry| =16 and [Ry| =0, and |R¢| = 8 and |R¢| = 0. We call the combined set
of all routers R = UR;, those owned by some network in our ground truth dataset,
and the set R = UR,; those we know not to be owned by a specific network in our
ground truth datasets. Using our knowledge of interface ownership, we derive |R| =
3,795 and |R| = 2,340 routers on which to test AS assignment heuristics. We consider
H(r), the AS to which a certain heuristic assigns router r, as a successful assignment
if (r € R)&&(H(r) € A))||((r € R)&&(H(r) € A;)), ie., if the router is in R
and H (r) selects an AS owned by the same ISP as the router, or the router is in R and
H(r) selects an AS not owned by the ISP known to not own router.

Section 2.3 outlined the cases for which each heuristic provides an ambiguous as-
signment. To resolve ambiguous assignments, i.e., break ties, we paired each heuristic
with a second one. We tested all combinations of pairs of heuristics to find the best tie-
breaker? for each primary heuristic, resulting in the following combinations: Election
+ Degree, Neighbor + Degree, Customer + Neighbor, and Degree + Neighbor.

Figure 2 shows the fraction of routers we assigned successfully (bars labeled “S™),
and the fraction that were failures (bars labeled “F”), determined using the ground truth
datasets. Figure 2 presents these results separately for routers in R and R, and for differ-
ent assignment heuristics. We found that for single-AS routers, all heuristics are either
successful for the 67% in R or failures for the 33% in R. The explanation is straight-
forward: All routers in R; or R; have at least one interface in ISP;’s address space (not
necessarily being used by ISP;), and by extension an AS in A;. For single-AS routers in

2 The best tie-breaker is the heuristic that produced the largest number of successful assignments
for routers where the primary heuristic resulted in an ambiguous assignment.



R;, the AS must belong to A;, and the assignment is a success. For single-AS routers
in R;, assigning it to that single AS results in failure. For these single-AS routers in R;,
we have most likely failed to either see or accurately resolve the alias for the router’s
interface in address space not owned by ISP;.

Figure 2 shows that when a router has interfaces from multiple ASes, the most
effective stand-alone heuristic was Neighbor, which successfully assigned 70% of these
routers. Election + Degree was the most successful combination of heuristics (mainly
due to fewer failures on routers from R), with a success rate of 80%.

3 Applications of AS Assignment

In this section, we use the AS assignment heuristics described in Section 2.3 to produce
a dual graph that merges router and AS-level topologies. We then describe two appli-
cations of this dual graph construct — producing representative dual topologies of the
Internet, and improving the accuracy of AS-level traceroute tools.

3.1 Toward representative dual topologies of the I nternet

Previous work [11,21] has focused
on generating AS-level graphs of 1e+07
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gies, i.e., AS annotated router-level AS degree

graphs, of arbitrary size, preserving
the statistical properties of the In-
ternet’s dual graph. Another applica-
tion is to security-related situational
awareness objectives, which require knowledge of the internal structure of ASes. We
focus on two questions: How many inferred single-AS (internal) and multi-AS (border)
routers do ASes own (with the aforementioned caveat that we may mis-characterize
routers as single-AS if we undersample or mis-resolve interfaces)? Is there a correla-
tion between an AS’s degree and the number of routers it owns? We use the heuristics
from Section 2.3 to assign routers to ASes, and measure the router ownership properties
of resulting ASes. Our results do not represent the actual number of routers owned by
an AS, only the number observed in our data samples.

We first examine the number of single-AS routers owned by an AS, which does not
depend on the assignment heuristic we used, since every heuristic assigns a single-AS

Fig. 3: The number of single-AS routers per
AS vs degree (top) and the median number of
single-AS routers per AS vs degree (bottom)



router to the same AS. The top graph in Figure 3 shows a scatter plot of the number
of single-AS routers inferred per AS versus the AS degree as observed in BGP data
(from Routeviews2 and RIPE’s RRC12). We confirmed the expected positive correla-
tion, where ASes with larger degrees (which typically represent larger transit providers)
tend to have more single-AS routers. Several outliers have many single-AS routers and
relatively low AS degrees (1 or 2). The top 10 such outliers corresponded to ASes that
were either regional networks of a larger transit provider, or smaller administrative do-
mains within a large transit provider. Consequently, these ASes had just one or two
observed AS links, to the backbone AS of the larger transit provider. It is plausible
that such regional transit networks or access provider networks have a large number of
single-AS routers.

The bottom graph in Figure 3 shows the median number of single-AS routers per
AS as a function of the AS degree. We bin ASes according to their degree, ensuring a
minimum bin size of 50 ASes. We see a strong positive correlation between the number
of single-AS routers and the inferred AS degree, which is expected since ASes with
larger AS degrees typically represent transit providers, which need many routers. ASes
with lower degrees are typically stub networks with less internal routing infrastructure.

Figure 4 shows the number of
100 — ‘ ‘ multi-AS routers owned by an AS
et @ as a function of AS degree, for dif-
Degree a ferent AS assignment heuristics. We
found similar results with the Elec-
s o tion, Neighbor and Degree assign-
o o8 ) 1 ment heuristics, and a strong positive
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X mmEemes e smesosee . gree. The Customer heuristic shows
: a much weaker correlation between
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AS degree AS degree. Customer favors lower
(BGP) degree ASes, since customer
ASes tend to have smaller degrees
than their providers, and Customer
assigns a multi-AS router to the cus-
tomer AS, decreasing the number of multi-AS routers for ASes with larger BGP de-
grees. We found that the Neighbor heuristic favors higher (BGP) degree ASes, inflating
the number of multi-AS routers for higher degree ASes.
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3.2 Toward accurate AS-traceroute

As a second application of the dual graph construct, we outline an approach to designing
a more accurate AS-traceroute tool, a problem first studied by Mao et al. [23]. Mao et
al. concluded that an accurate router-level map of the Internet would help to resolve
anomalies seen in AS paths derived from traceroutes. Here, we investigate whether our
AS assignment heuristics can improve AS-traceroute accuracy, by resolving anomalies
such as missing AS hops, extra AS hops and AS loops. Identifying missing and extra



AS hops requires BGP feeds from the vantage points used for traceroute measurements,
which the Ark infrastructure does not yet have. However, we can identify traceroutes
that have AS loops, by performing an IP-to-AS mapping using BGP dumps collected
from Routeviews and RIPE. Mao et al.. [23] noted two possible explanations for false
loops in traceroute paths: the presence of Internet Exchange Point (IXP) infrastructure,
and sibling ASes. We investigated whether our router-to-AS assignment alone can help
to resolve these loops. In future work, we plan to incorporate IXP data collected by
Augustin et al.. [7] to identify false loops due to IXP infrastructure, and WHOIS data
to identify false loops due to sibling ASes.
By applying IP-to-AS mapping on
the sequence of interfaces seen in each
traceroute, we found that most Ark mon-
itors yielded fewer than 5% of inferred
AS paths that had loops. However, traces
from one particular monitor yielded 75%
of inferred AS paths with loops, which
we discovered was caused by a single in-
correctly mapped interface traversed by
most traces from that monitor. We re-
moved these traces for the remainder of
our analysis. We then assigned an AS 02 Election  Customer  Neighbor  Degree Election+
to each inferred router on the path using peoree
the AS assignment heuristics from Sec- Fig. 5: Fractions of traceroute loops re-
tion 2.3. We replaced the loop segmentin  solved by each heuristic.
the traceroute AS path with an AS path
segment derived from the router assignment heuristic. We measured the fraction of
paths with traceroute loops resolved, i.e., removed, via this procedure. Figure 5 shows
the fraction of traces with AS path loops that we could resolve using each of the AS
assignment heuristics. We found that the Customer heuristic performed poorly. The
Neighbor heuristic, which was the most accurate stand-alone AS assignment heuris-
tic (Section 2.4) was able to resolve 62% of AS path loops. The combination Elec-
tion+Degree, which was the most accurate combination AS-assignment heuristic, was
able to resolve just over 61% of AS path loops.
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4 Related Work

There has been significant interest in studying structural properties of the Internet at the
router and AS-levels for over a decade [12]. Several measurement studies have since
highlighted the incompleteness of topologies inferred from publicly available routing
data [9, 16, 22, 24, 32]. Much work has gone toward capturing as much of the Inter-
net’s AS-level topology as possible, most notably Zhang et al. [32] and He et al. [16].
Several large-scale active measurement projects, including Ark [17], iplane [20], and
DIMES [27], use traceroutes from distributed vantage points to a large set of desti-
nations across the IPv4 Internet. The resulting datasets have been used to reconstruct
router and AS-level topologies, but merging the two views has received less attention.



A major challenge in deriving topologies from traceroute measurements is alias res-
olution, i.e., determining which interfaces belong to the same router. Tangmunarunkit et
al. [13] proposed Mercator, a tool that attempted alias resolution by observing response
packets sent from different interfaces than those probed. Spring et al. [29] used Ally to
detect when two candidate interfaces likely shared the IP ID counter. Follow up work
on alias resolution [8, 15, 28] used techniques such as IP ID counter velocities, DNS
hostname conventions, and bi-directional traceroutes. Keys [19] recently documented
CAIDA’s attempt to expand and combine these techniques into a unified system.

There has been relatively little work on assigning routers (inferred by the previ-
ous alias resolution techniques) to the ASes that own those routers. Tangmunarunkit
et al. [31] used a simple heuristic based on longest prefix matching to assign routers
(inferred using Mercator) to ASes. Due to a lack of ground truth data, they were not
able to validate their router-to-AS assignment heuristic. Tangmunarunkit et al. [30] was
the first to study the properties of ASes in terms of the number of routers per AS.
They found that ASes show high variability in the number of routers, and the number
of routers per AS is highly correlated with BGP AS degree. Our work on improving
AS-traceroute is inspired by the work of Mao et al. [23], who studied the discrepancies
between traceroute-derived AS paths and BGP AS paths, and Hyun et al. [18], who
measured the presence of third-party addresses in traceroute paths.

5 Conclusions

We have presented an approach to merge router and AS-level views of the Internet,
creating a dual graph of the Internet. We proposed new heuristics for assigning routers
from traceroute-derived graphs to ASes. We validated the success rates of our heuris-
tics against ground truth data from a set of commercial 1SPs and research networks. For
multi-AS routers, the most successful heuristic was a combination of Election (assign
the router to the AS with the largest number of interfaces) followed by Degree (assign
the router to the AS with the smallest degree), with a success rate of 80%. For 32%
of inferred single-AS routers, we either missed or mis-resolved some interface that be-
longed to the true owning AS, reducing our overall AS assignment accuracy to 71%.
We also showed how our AS assignment techniques could be used to quantify statisti-
cal properties of ASes, as well as to improve on current state-of-the-art AS-traceroute
techniques, resolving up to 62% of false loops observed in traceroute-derived AS paths.
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